
I	am	Will	Robbins	and	I	am	the	VP	silicon	for	Mindspeed	in	the	UK,	formerly	Picochip.
On	the	Picochip	website	it	said	of	me	“he	has	consistently	produced	 ‘right	first	time’	
silicon	for	highly	complex	devices”.
This	is	no	longer	true.
I	have	now	suffered	with	failed	silicon.	It	is	horrible,	stomach	churning	and	very	
expensive.

Which	of	you	have	not	put	a	bug	on	silicon?

You	are	very	lucky.	We	all	need	 to	help	you	stay	lucky.

So	we	need	to	talk	about	“When	silicon	fails…”

We	ALL	need	to	talk	about	silicon	bugs.
….	because	we	don’t	

I’m	going	explain:
- why	I	think	we	need	to	talk	about	silicon	bugs
- why	these	bugs	evade	pre-silicon	verification
- and	“talk”	about	some	real	silicon	bugs.

BUT	my	mission	today	 is	to	get	us	talking	about	silicon	failure..

1



Pre-silicon	verification	is	only	a	means	to	an	end,	it	is	not	an	end	in	itself.

The	end	point	is	working	silicon.	

So	the	only	way	to	judge	the	quality	of	pre-silicon	verification	is	whether	the	silicon	
works.

If	we	want	to	learn	about	pre-silicon	verification	we	need	to	talk	about	silicon	bugs	
and	about	what	could	go	wrong.

But	talking	about	silicon	bugs	is	unfashionable	and	bordering	on	 the	taboo.

As	we	have	seen	today	pre-silicon	verification	has	over	the	last	fifteen	years	reached	
a	very	high	level	of	sophistication.	

But	the	silicon	validation	languishes	in	the	shadows.

2



I	would	(boldly)	like	to	propose	that	there	are	only	two	reasons	for	bugs	evading	the	
pre-silicon	verification	and	getting	onto	silicon

Either	“The	ASIC	model	fails”
Or	“The	feature	was	not	verified”

You	may	argue	with	this	simple	proposition,	but	look	at	it	the	other	way	around:

If	a	feature	has	been	fully	verified	and	the	ASIC	model	holds	then	it	will function	on	
silicon.

3



Lets	consider	 the	first	of	these	– the	ASIC	model	failing

By	“the	ASIC	model”	I	mean	the	process	by	which	you	can	run	a	zero	delay	RTL	
simulation	and	believe	the	silicon	will	function.

This	abstraction	is	vast	– high	level	code	 to	wires,	doping	and	transistors.

Now	it	is	obviously	both	 impossible	and	undesirable	to	“model	everything”.	

But	we	need	to	consider	what	to	model	to	maintain	this	abstraction:
- How	much	should	 the	power	supply	bounce	 in	every	part	of	the	chip	be	modelled?
- Is	that	block	box	– be	it	PLL	or	standard	cell	–modelled	and	characterised	
sufficiently?
- Has	the	clock	crossing	be	dealt	with?
- Do	hot	spots	on	the	die	take	you	out	of	the	characterised	temperature?

The	crucial	point	here	is	that	ENGINEERING	judgement	has	to	be	made	on	what	to	
model	and	what	not	to	model,	

..	and	if	they	are	wrong	the	ASIC	model	will	break,	and	the	silicon	could fail.

4



The	second	reason	for	silicon	failure	is	the	“feature	not	being	verified”.

This	sounds	at	best	like	a	lack	of	coverage	or	at	worst	negligent.		“What!!	You	didn’t	
verify	the	feature?”

But	think	about	this	– What	do	we	fully	verify	that	is	much	bigger	than	a	NAND	gate?	
We	probably	don’t	even	fully	verify	a	multiplier.

So	it	is	IMPOSSIBLE	to	verify	everything.

Instead,	as	you	know,	your	 skill	is	to	pick	scenarios	that	represent	real	usage.

You	have	to	use	your	ENGINEERING	judgement	to	pick	these	scenarios	– and	if	you	
get	this	wrong	the	silicon	can	fail.

5



So	what	I	hope	that	we	have	established	is:

• It	is	impossible	to	verify	everything	

• It	is	impossible	to	model	everything.

But	real	life	is	everything

We	have	to	make	ENGINEERING	judgements	of	what	is	important,	and	what	is	not..

6



So	we	have	good	news	and	bad	news.

The	good	news	is	that	there	are	only	TWO	reasons	why	silicon	can	fail.

The	bad	news	is	that	BOTH	of	these	rely	on	engineering	judgement.	So	there	are	 no	GREEN	
LIGHTS	here.

Our	industry	finds	comfort	in	green	lights.	- 100%	coverage,	All	tests	passing,	Zero	timing	
violations,	No	DRC	errors.

But	here	we	do	not	have	this,	we	have	judgement,	we	have	an	AMBER	light.	

So	if	these	“judgements”	are	so	important	how	do	we	get	better	at	them?	

We	need	to	learn	from	mistakes,	learn	from	silicon	bugs,	when	these	judgements	were	
wrong.	But	learning	from	your	own	mistakes	is	painful,	much	better	to	learn	from	
everybody’s	mistakes.	So	this	is	why	we	need	to	talk	about	wrong	judgement	and	when	
silicon	fails….

So	my	mission	today	is	to	ask	you	to	talk	about	and	share	your	stories	of	silicon	failure,	and	
what	you	learnt	from	them.	Maybe	 an	ice	beaker	 over	lunch	“tell	me	about	your	last	silicon	
bug	and	what	did	you	learn	from	it?”

There	 is	an	obvious	issue	here	– confidentiality.	I	don’t	want	you	to	think	that	I	am	ignoring	
it.	But	I	have	been	gathering	silicon	failure	stories	on	my	blog	(plug	coming	up..),	and	in	
many	ways	we	are	all	doing	is	very	similar	things,	we	can	remove	the	application,	remove	
the	company	name,	remove	the	IP	vendor	and	there	are	still	nuggets	of	wisdom	to	be	found.

So	enough	of	the	high	level	philosophising	– lets	talk	about	some	bugs.	Lets	do	four	quick	
failure	stories	before	lunch.
All	of	the	are	taken	from	www.whensiliconfails.com

7



Lets	start	with	a	broken	ASIC	model.

Verifying	an	SoC,	all	was	going	well,	but	when	the	voltage	is	reduced	it	stops	booting.	

After	lots	of	investigation	the	clock	 to	the	Flash	was	found	to	firstly	shorten	and	then	
disappear	completely	over	a	very	short	voltage	window.	

But	ALL	the	pre-silicon	verification	passed,	ALL	the	STA	passed.	

(You	will	understand	that	here	I	here	condensing	several	weeks	of	angst	down	into	
45	seconds).	

It	was	found	that	a	fast	clock	in	the	padring	was	taken	through	the	longest	delay	cell	
on	the	chip	– a	smoking	gun	was	found.

Further	investigation	with	Spice	showed	that	at	low	voltage	this	delay	cell	simply	
filtered	out	the	clock	pulse.
The	delay	cell	no	longer	performed	like	its	model.

The	ASIC	model	and	so	the	silicon	was	broken….

The	lesson	learnt	here	is	to	be	very	careful	with	delays	cells	and	ban	the	dangerous	
ones.

8



This	bug	is	entitled	“Don’t	 saw	through	the	branch	on	which	you	are	sitting”.

Or	in	other	words	“Don’t	remove	a	resource	on	which	you	are	relying	- even	
temporarily”.	

The	requirement	was	to	be	able	to	control	the	DDR	clock	 from	the	processor.

Unfortunately	changing	this	clock’s	speed	entailed	stopping	and	restarting	it.

Stopping	was	fine.	But	trying	to	read	code	to	restart	it	from	a	SDRAM	that	was	
disabled	was	not	going	to	work.

This	may	sound	foolish	and	simplistic.	But	this	was	put	on	silicon.

What	can	we	learn	from	this?	Verification	should	be	tied	more	closely	to	the	
requirements.

9



For	this	bug	we	are	looking	at	a	significant	block	in	a	wireless	Phy.

This	block	parsed	an	input	stream,	de-multiplexed	it,	and	kept	track	of	resources	in	
the	SDRAM.

And	this	was	verified	at	this	block	 level.

The	silicon	could	occasionally	see	resources	run	out	unexpectedly	after	maybe	an	
hours	operation.

This	was	tracked	down	to	a	FIFO	deep	in	the	block	 loosing	entries	when	it	was	full	
and	was	pushed	and	popped	 	simultaneously.

It	would	have	been	very	difficult	to	specify	scenarios	that	would	have	stimulated	this	
situation	– but	 it	happened	 in	real	life.

The	lesson	to	learn	here	is	that	the	block	was	to	complicated;	the	FIFO	needed	unit	
test.

10



Last	bug	– another	“not	verified”	bug.	And	one	of	my	favourites	as	it	is	counter	
intuitive.

The	performance	of	this	processor	was	crippled	by	LARGE	caches,	not	by	small	ones.

This	SoC	had	very	good	performance	numbers	– in	pre-silicon	verification	AND	in	
post-silicon	validation

BUT	when	the	number	of	processes	reached	about	five	the	performance	
plummeted.	

Again	much	angst.

What	was	discovered	was	that	on	every	context	switch	the	cache	was	purged	of	all	
“dirty”	 lines.	So	there	were	many	consecutive	writes	to	memory.	And	because	they	
were	large	caches	there	many,	many	writes.

The	memory	controller	was	optimised	for	reads.
It	could	not	 respond	to	this	deluge	of	writes	and	performed	very	badly.

The	verification	scenario	chosen	was	read	latency.	This	was	wrong.
The	lesson		here	is	know	the	application,	and	know	what	the	OS	is	doing	in	detail.

11



IN	CONLCUSION

It	is	silicon	functionality	what	matters	
pre-silicon	verification	ONLY	a	means	to	an	end.

Silicon	fails	for	ONLY	two	reasons

BUT	both	of	these	are	the	result	of	difficult	ENGINEERING	judgement	–with	NO	
green	lights

To	learn	about	verification	
To	learn	about	these	judgement	

WE	need	 to	look	to	silicon	bugs

WE	need	 to	talk	about	silicon	failure.	

Thank	you.

12



13


